

ADVANCING POWERFUL NEW CLASS OF IMMUNOTHERAPEUTIC ANTIBODIES

R&D Day 13 OCTOBER 2021

Legal Disclaimer

About this Presentation

This presentation is for informational purposes only to assist interested parties in making their own evaluation with respect to the Proposed Business Combination (the "Proposed Business Combination") between Big Cypress Acquisition Corp. ("Big Cypress") and SAB Biotherapeutics, Inc. ("SAB") and for no other purpose. The information contained herein is not all inclusive and none of Big Cypress, SAB or their affiliates makes any representation or warranty, express or implied, as to the accuracy or completeness of the information contained in this presentation. Viewers of this presentation should make their own evaluation of SAB and accuracy of the information contained in this presentation and should make such other evaluation as they believe to be appropriate.

Important Information and Where to Find It

Big Cypress intends to file with the SEC a Registration Statement on Form S-4 (the "Registration Statement"), which will include a preliminary prospectus and preliminary proxy statement. The Company will mail a definitive proxy statement/final prospectus and other relevant documents to its stockholders. This communication is not a substitute for the Registration Statement, the definitive proxy statement/final prospectus or any other document that Big Cypress will send to its stockholders in connection with the Proposed Business Combination. Investors and stockholders of Big Cypress are advised to read, when available, the proxy statement/prospectus will contain important information about the Proposed Business Combination. The definitive proxy statement/final prospectus will contain important information about the Proposed Business Combination. The definitive proxy statement/final prospectus will be mailed to stockholders of Big Cypress as of a record date to be established for voting on the Proposed Business Combination. Stockholders will also be able to obtain copies of the proxy statement/prospectus, without charge, once available, at the SEC's website www.sec.gov or by directing a request to ir@bigcypressaccorp.com.

Participants in the Solicitation

Big Cypress, SAB and their respective directors, executive officers, other members of management, and employees, under SEC rules, may be deemed to be participants in the solicitation of proxies of Big Cypress stockholders in connection with the Proposed Business Combination. Investors and stockholders may obtain more detailed information regarding the names and interests in the Proposed Business Combination of Big Cypress' directors and officers in Big Cypress' filings with the SEC including the Registration Statement to be filed with the SEC by Big Cypress, which will include the proxy statement of Big Cypress for the Proposed Business Combination, and such information and names of SAB's directors and executive officers will also be in the Registration Statement filed with the SEC by Big Cypress, which will include the proxy statement of Big Cypress for the Proposed Business Combination.

Non-Solicitation

This presentation is not a proxy statement or solicitation of a proxy, consent or authorization with respect to any securities or in respect of the potential transaction and shall not constitute an offer to sell or a solicitation of an offer to buy the securities of Big Cypress, the combined company or SAB Biotherapeutics, nor shall there be any sale of any such securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of such state or jurisdiction. No offer of securities shall be made except by means of a prospectus meeting the requirements of the Securities Act of 1933, as amended.

Special Note Regarding Forward-Looking Statements

Certain statements made herein that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under The Private Securities Litigation Reform Act of 1995. Forward-looking statements generally are accompanied by words such as "believe," "may," "will," "estimate," "continue," "anticipate," "intend," "expect," "should," "would," "plan," "predict," "potential," "seek," "future," and other statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding future events and other statements of Big Cypress and SAB's management and are not predictions of a definitive statements of fact or probability. Actual events and intended for impossible to predict and will differ from assumptions. Many actual events and circumstances are beyond the control of Big Cypress and SAB. These statements are subject to a number of risks and uncertainties and actual results could differ materially from the results implied by these forward-looking statements. In addition, forward-looking statements provide Big Cypress and SAB currently believe are immaterial that could also cause actual results to differ from those contained in the forward-looking statements. In addition, forward-looking statements will cause Big Cypress and SAB says assessments as of the date of this communication. Big Cypress and SAB specifically disclaim any obligation to do so. These forward-looking statements are subject to update that subsequent events and developments will cause Big Cypress and SAB specifically disclaim any obligation to do so. These forward-looking statements are solid to update these forward-looking statements are point in the future, Big Cypress and SAB specifically disclaim any obligation to do so. These forward-looking statements are solid to update these should not be placed upon the forward-looking statements are solid to update these should not be placed upon the forward-looking statements are ong and the control of Big Cypress and SAB specifically

All trademarks, service marks, and trade names of SAB used herein are trademarks, service marks, or registered trademarks of SAB. Any other product, company names, or logos mentioned herein are the trademarks and/or intellectual property of their respective owners

2

Forward Looking Statements

The material in this presentation has been prepared by SAB Biotherapeutics, Inc. (SAB) and is general background information about SAB's activities current as of the date of this presentation. This information is given in summary form and is not intended to be complete. Information in this presentation, including financial forecasts, should not be considered advice or a recommendation to investors or potential investors in relation to holding, purchasing or selling securities or other financial products or instruments and does not take into account any particular investment objectives, financial situation or needs.

This presentation may contain forward looking statements including statements regarding our intent, belief or current expectations with respect to SAB's businesses and operations, market conditions, results of operations and financial condition, capital adequacy, specific provisions and risk management practices. Readers are cautioned not to place undue reliance on these forward-looking statements. SAB does not undertake any obligation to update any information herein for any reason or to publicly release the result of any revisions to these forward-looking statements to reflect events or circumstances after the date hereof to reflect the occurrence of unanticipated events. While due care has been used in the preparation of forecast information, actual results may vary in a materially positive or negative manner and the presentation may contain errors or omissions. Forecasts and hypothetical examples are subject to uncertainty and contingencies outside SAB's control. Past performance is not a reliable indication of future performance.

Unless otherwise specified, information is current at the date hereof, unless specifically noted.

3

Today's Speakers

KOL SPEAKERS

Arturo Casadevall, MD, PhD

The Alfred and Jill Sommer Professor and Chair W. Harry Feinstone Department of Molecular Microbiology & Immunology, Bloomberg Distinguished Professor JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH JOHNS HOPKINS SCHOOL OF MEDICINE

Michael Haller, MD, MS-CL

BIOTHERAPEUTICS

Professor and Chief Pediatric Endocrinology Silverstein Family Eminent Scholar Pediatric Endocrinology UNIVERSITY OF FLORIDA COLLEGE OF MEDICINE

SAB BIOTHERAPEUTICS MANAGEMENT

Eddie J. Sullivan, PhD PRESIDENT & CEO / CO-FOUNDER

Tom Luke, MD CHIEF MEDICAL OFFICER

Christoph Bausch, PhD, MBA CHIEF SCIENCE OFFICER

Novel DiversitAb[™] Platform for Developing Highly-Differentiated Immunotherapies

BIOTHERAPEUTICS

Robust, growing clinical-stage pipeline spanning multiple therapeutic areas with multiple near-term catalysts

Vertical integration enables rapid, scalable development of multi-targeted products

Leveraged advanced genetic engineering & antibody science to develop Tc bovine-derived fully human polyclonal antibodies

Established proof-of-concept through US Government funded programs & partnerships totaling ~\$300MM

Strong corporate position with experienced leadership team and growing infrastructure

Innovative DiversitAb[™] platform produces a new class of targeted fully-human, highly-potent polyclonal antibodies

Video: SAB Biotherapeutics - Final (vimeo.com)

DiversitAb[™] Platform

Advancing a new class of fully-human polyclonal Tc bovine-derived antibodies without the need for human serum

- Reliable, controlled, consistent production of diverse, hightiter, high-avidity, fully-human polyclonal antibodies
- Generated antibodies behave similarly to human-derived with ability to specifically target
- Proprietary immunization strategies and robust immune response drive extremely high potency
- Well-established and understood regulatory path as biologic through FDA-CBER
- Vertical integration enabling rapid, scalable development and production of multivalent products

Versatile Antibody Platform with Ability to Capture Multiple Markets

Human Antibody Discovery & Development Engine, New Source for IgG, Therapeutic Production Represents Multibillion-Dollar Market Opportunity

FRAPEUTICS

DiversitAb[™]: Multi-Dimensional Immunotherapies from Tc Bovine-Derived Human Antibody Platform

Combinatorial mechanisms target diverse causes common to many human diseases

Activates full cell effector function and complement	Exceeds Targeted Neutralization
Designed to bind to multiple targets, strains, or mutations	Specifically-Targeted Antibodies
Drives higher titers with elevated potency, avidity, improved function	Cross-Reactive & High Potency
Potential to introduce identically-produced new strain or antigen	Seasonal Therapeutic/ Emerging Variants
Expanding IV base formulations to IM, SC and inhaled forms	Clinical Flexibility & Patient Ease
	Activates full cell effector function and complementDesigned to bind to multiple targets, strains, or mutationsDrives higher titers with elevated potency, avidity, improved functionPotential to introduce identically-produced new strain or antigenExpanding IV base formulations to IM, SC and inhaled forms

Multi-Pronged Business Strategy Powered by Novel Proprietary Platform

Opportunity to Create New Class of Immunotherapies

• RAPID PROOF-OF-CONCEPT (90 days to CGMP)

NATURAL HUMAN **ANTIBODIES** (without human donors or serum)

MULTI-VALENT **CAPABILITIES**

(by nature, & by design-multiple targets in one product)

 TARGET AGNOSTIC (virus, bacteria, toxin, allergen)

SCALABLE, REPLICABLE, **CONSISTENT PRODUCTION**

Product Development of Pipeline Assets: Best-in-Class, First-in-Class & Unmet Needs

US Gov. Rapid Response Biodefense

Emerging Infectious Disease & Biothreats

Industry Partnering & Research Collaborations: Monoclonal Discovery & Polyclonal Development/Production

& Public Health Security:

- Demonstrated clinical safety and efficacy
- Proof-of-platform with highly-mutating infectious disease
- Robust pipeline with broad therapeutic reach
- Multiple ongoing collaborations with global pharma
- Opportunities in monoclonal discovery, human immune globulins and therapeutic innovation
- \$200M+ awarded for rapid & pandemic response
- Recognized as only therapeutic platform to address priority pathogens by World Health Organization
- Demonstrated in vivo efficacy to >12 targets

10

Robust Pipeline with Broad Therapeutic Reach

	Candidate	Indication	Preclinical	Phase 1	Phase 2	Phase 3
Infectious	SAB-176	SEASONAL INFLUENZA	Phase 1 an	d Phase 2a Challenge e	nrollment complete	Phase 1 full data readout; Phase 2a topline data expected 4Q2021
Disease	SAB-185	COVID-19 (USG FUNDED)		Ρ	hase 3 (ACTIV-2) ongo	ing NIH NIAID led
	SAB-142	TYPE 1 DIABETES	Additional studie	s (IND-Enabling) expec	cted to begin 1Q2022	
Autoimmune Disease	SAB-142	TRANSPLANT (INDUCTION/REJECTION)	Additional studie	es (IND-Enabling) expe	cted to begin 1Q2022	
	SAB-181	HUMAN IMMUNE GLOBULIN (IgG)	Pre-IND meeting	discussion expected 4	Q2021	

Government-funded clinical-stage program in Middle East Respiratory Syndrome (MERS) coronavirus

Ongoing discovery programs in oncology, infectious and idiopathic diseases

Multiple Catalysts through YE2022 BIOTHERAPEUTICS Proof-of-**SAB-176 SAB-176 SAB-142 SAB-185 SAB-181** for seasonal for COVID-19 for seasonal for Type 1 for IgG concept established influenza Phase 1, 1b, 2 influenza Diabetes and pre-IND for Phase 2a fully enrolled; Phase 1 data Transplant meeting DiversitAb™ graduated to additional Challenge readout and expected Platform Trial fully Phase 3 in Phase 2a studies (INDin **4Q2021** enrolled ACTIV-2 Challenge Enabling) Trial topline expected to adaptive trial begin **1Q2022** at interim data analysis expected in **4Q2021**

SAB-162 oncology proof-ofconcept

data

expected

in **1H2022**

The Power of Polyclonal Antibodies

Tom Luke, MD CHIEF MEDICAL OFFICER

Polyclonals: Broader Spectrum Efficacy Valuable in Range of Indications

FDA: CENTER FOR DRUG EVALUATION & RESEARCH (CDER)

Characterized Monoclonal Antibody

mAb

Clones of a single antibody bind to a specific epitope

Monoclonal Approach

- Highly-targeted with specific activity
- Iterative Ab identification and selection process
- Selected and cloned in vitro
- May promote escape mutants via selective pressure
- Resistance may develop as pathogen/target mutates
- Current cocktail trend to address resistance

FDA: CENTER FOR **BIOLOGICS** EVALUATION & RESEARCH (CBER)

Natural mixture of many antibodies bind to multiple epitopes

Polyclonal Approach

- Diversity of antibodies with multiple modalities
- Naturally selected and produced in vivo
- Effective against escape mutants
- Reduced possibility of resistance
- Activates cellular immunity
- Synergistic properties not duplicated by mono- or oligoclonals

Fully-Human & Functional Antibodies

Rich Antibody Diversity

VDJ repertoire usage mimics human-derived diversity in variable region

Highly-Functional Fc Region

Matches full activation of effector cells and functional glycosylation / post translational modification

Activation of Effector Function

Human effector cell phagocytosis and degranulation activation MONOCYTES, NEUTROPHILS, NATURAL KILLER CELLS

Clinically-Demonstrated Proof-of-Platform

Completed Government-Funded Phase 1 Clinical Trial

MIDDLE EAST RESPIRATORY SYNDROME CORONAVIRUS (MERS-COV)

Confirmation of human antibody attributes & behavior

- Baseline pharmacokinetics (PK) analysis completed with half-life of 28.5 days; identical to human-derived IgG
- No anti-drug antibodies detected despite long half-life
- No affinity ligand immunogenicity
- No immunogenicity to bovine plasma proteins

Well-tolerated with no drug-related SAE's

- 38 healthy volunteers
- 6 cohorts, IV, escalating dose
- Dose range: 1.5 mg/kg to 50 mg/kg

Demonstrated Human Safety and Efficacy

Confirms Feasibility of Multi-dosing

High-dose therapy resulted in improved clinical parameters associated with reduced *M. hominis* burden following two subsequent infections

JARED N SILVER, CAMERON D ASHBAUGH, JACOB J MILES, HUA WU, GREGORY T MARECKI, JOYCE K HWANG, JIN-AN JIAO, MARK ABRAMS, EDDIE J SULLIVAN, DUANE R WESEMANN, DEPLOYMENT OF TRANSCHROMOSOMAL BOVINE FOR PERSONALIZED ANTIMICROBIAL THERAPY, CLINICAL INFECTIOUS DISEASES, VOLUME 66, ISSUE 7, 1 APRIL 2018, PAGES 1116–1119

KOL PRESENTATION: Antibody therapies against Infectious Diseases past, present and future

Arturo Casadevall, MD, PHD

Bloomberg Distinguished Professor JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH

Antibody therapies against Infectious Diseases past, present and future

Arturo Casadevall MD, PhD

Johns Hopkins Bloomberg School of Public Health

Thomas Shastid

Thomas Shastid Experience with Diphtheria and antitoxin

GOYA'S 'LAZARILLO DE TORMES' (1819)

I FOUND THE BOY VERY ILL, THE WHOLE BACK OF HIS THROAT BEING LIKE A WHITE VELVET. I HAD NEVER USED THE NEW **REMEDY BEFORE, BUT** DETERMINED TO TRY IT TO SAVE THE **BOY'S LIFE. I INJECTED A SMALL** QUANTITY UNDER THE SKIN OF THE STOMACH AND WATCHED THE THROAT. I CAN ONLY COMPARE THE MARVELOUS **RESULT TO THE DISAPPERANCE OF SNOW** BENEATH A HOT SUN. AFTER THE SECOND DOSE EVERY TRACE OF THE MEMBRANE DISAPPEARED, AND THE BOY SOON *RECOVERED*"

Thomas Shastid experience in small Illinois town in 1890s

1901 First Nobel Prize in Medicine or Physiology

"for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the Domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths"

Child treated with Serum Scientific American 1894

A timeline for Antibody therapy for infectious diseases

Convalescent Serum (Plasma) used in past epidemics

THE USE OF CONVALESCENT HUMAN SERUM IN IN-FLUENZA PNEUMONIA—A PRELIMINARY REPORT.*

L. W. McGUIRE, Lieutenant Commander, M. C., U. S. N., and W. R. REDDEN, Lieutenant, j. g., M. C., U. S. N., U. S. Naval Hospital, Chelsea, Mass.

Use of Convalescent Measles Serum to Control Measles in a Preparatory School

> J. ROSWELL GALLAGHER, M.D. School Physician, The Hill School, Pottstown, Pa.

American Journal of Diseases of Children

Volume 71			J	ANU	ARY	946	•	Number	1
Co	PYRIGHT,	1946,	BY	THE	AMERICAN	N MEDICAL	Association		

MUMPS Use of Convalescent Serum in the Treatment and Prophylaxis of Orchitis

COMMANDER ALWIN C. RAMBAR (MC), U.S.N.R. Johns Hopkins Bloomberg School of Public Health

1918

1934

1946

Meta Analysis of 1918 Epidemic Serum Data

Annals of Internal Medicine

REVIEW

Meta-Analysis: Convalescent Blood Products for Spanish Influenza Pneumonia: A Future H5N1 Treatment?

Figure 2. Absolute risk differences in mortality among patients treated with convalescent blood products and controls.

Risk Difference, percentage points

Abandonment of Antibody Therapies to Treat Infectious Diseases 1940-1950

Antimicrobial therapy replaces serum therapy for Bacterial Diseases

Concerns about serum-associated hepatitis Lead to abandonment of convalescent sera

Correspondence

Hepatitis after Prophylactic Serum

SIR,—A recent outbreak of poliomyelitis has aroused controversy as to the value of convalescent serum. In the *Journal* of September 10 (p. 588) Mr. G. R. Girdlestone advocates its use, and regrets the statement of Drs. Donald Paterson and MacDonald Critchley in the *Times* of August 8 that the disease does not yield to any known treatment applied within the first few days of onset.

On June 1, 1937, seven children housed in one block of a large institution for mental defectives were inoculated with convalescent measles serum to protect them from the disease with which they had recently been in contact. Each child received 4.5 c.cm. of the serum, which came from the same batch and which was obtained from a well-known reputable firm.

After an interval varying between seventy-eight and eightythree days these seven children developed jaundice and became gravely ill. No other child in the institution at that time had jaundice. The disease in its early stages or in its milder forms appeared to be indistinguishable from common infective hepatitis (infectious catarrhal jaundice), but of the seven cases three developed rapidly increasing signs of liver failure terminating in death. Material derived from postmortem examination of the fatal cases showed a condition of acute atrophy of the liver. (Photomicrographs of sections of the liver in two of the cases are enclosed.)

British Medical Journal Sept 24, 1938

Serum therapy experience establish the three principles of antibody therapy for Infectious Diseases

- **1.** The Specificity Principle *effective antibody preparations for the prevention and therapy of infectious diseases must contain antibody <u>specific</u> to the <i>microbe targeted*
- 2. The Quantitative Principle *effective antibody preparations for the prevention and therapy of infectious diseases must contain <u>sufficient</u> antibody to microbe targeted to mediate protection.*
- 3. The Temporal Principle *antibody preparations are most effective when given prophylactically or early in the course of disease.*

From Flexner J. Exp. Med 1913 on the Treatment of meningococcal meningitis

Period of injection.	No. of cases.	Recovered.	Died.	Per cent. recovered.	Per cent. died.
Ist to 3d day 4th to 7th day Later than 7th day	199 346 666	163 252 423	36 94 243	81.9 72.8 63.5	18.1 27.2 36.5
Totals	1,211	838	373	69.2	30.8

Mortality according to the Period of Injection of the Serum.

CP Efficacy in Several Epidemics

Pathogen (Year)	Study type	Mortality Reduction	Reference
Influenza (1918)	Meta Analysis	-20%	Luke et al. 2005
Junin Virus (1979)	RCT	-93%	Maiestegui et al. 1979
SARS-CoV (2003)	Case Series	-73%	Cheng et al. 2005
2009 H1N1 (2009)	RCT	-63%	Hung et al 2011
Ebola Virus	RCT	-18% (before adjustment) -8% NS	Griensven et al 2016
Seasonal flu	RCT	0	Beiger et al. 2019
SARS-CoV-2 (2020)	Meta Analysis	About -35%	Joyner et al. 2020

Post Morten on two negative trials

ORIGINAL ARTICLE

Evaluation of Convalescent Plasma for Ebola Virus Disease in Guinea

J. van Griensven, T. Edwards, X. de Lamballerie, M.G. Semple, P. Gallian, S. Baize, P.W. Horby, H. Raoul, N. Magassouba, A. Antierens, C. Lomas, O. Faye, A.A. Sall, K. Fransen, J. Buyze, R. Ravinetto, P. Tiberghien, Y. Claeys, M. De Crop, L. Lynen, E.I. Bah, P.G. Smith, A. Delamou, A. De Weggheleire, and N. Haba, for the Ebola-Tx Consortium*

Problem with Quantitative principle Used plasma with unknown amounts of specific antibody and subsequent studies showed many potential donors in the area had no significant antibody to Ebola virus Anti-influenza immune plasma for the treatment of patients \mathscr{O}^{\bigstar} $\textcircled{O}^{\bigstar}$ \mathscr{O}^{\bigstar} with severe influenza A: a randomised, double-blind, phase 3 trial

John H Beigel, Evgenia Aga, Marie-Carmelle Elie-Turenne, Josalyn Cho, Pablo Tebas, Carol L Clark, Jordan P Metcalf, Caroline Ozment, Kanakatte Raviprakash, Joy Beeler, H Preston Holley Jr, Stephanie Warner, Carla Chorley, H Clifford Lane, Michael D Hughes, Richard T Davey Jr, on behalf of the IRC005 Study Team*

Problem with temporal principle? ~44% were in ICU with advanced disease

Problem with Quantitative principle? High titer sera was > 1:80

2020-2021: COVID-19 Brings Greatest Deployment of Antibody Therapy against One Disease

- > 500,000 patients treated with Convalescent Plasma
- Several mAb therapies successfully deployed
- Horse immunoglobulins used against SARS-CoV-2
- Antibody therapies shown to be effective in reducing hospitalization and mortality

Casadevall et al eLife 2021

Is Convalescent Plasma Effective? The 7 lines of evidence

- **1.** Mechanism of action. Antibody to SARS-CoV-2 spike protein can mediate viral neutralization. Other mechanisms of action such as ADCC and complement action also operative. (YES!)
- 2. Animal studies show efficacy of human convalescent plasma. (YES!)
- **3.** EAP Data Analysis suggests lower mortality with early use of high titer plasma (used by FDA in EUA recommendation) (YES!)
- 4. > 10 Observational studies: Mt. Sinai NYC, Methodist Houston, Hackensack NJ, Italy, Iran, etc. report large reductions in mortality if given early before ICU. (YES!)
- 5. > 10 Randomized controlled trials all suboptimal in some way but most provide some encouragement. (MIXED)
- 6. Experiments of nature. Convalescent plasma has dramatic effects patients with congenital immune suppression (X-linked agammaglobulimia) (YES!)
- 7. Population data. Inverse correlation between plasma use and mortality in USA. (YES!)

O'Donnell et al. Columbia-Brazil RCT: Double-blinded placebo controlled trial

O'Donnell JCI 2021

Monoclonal vs. Polyclonal Preparations

	Monoclonal	Polyclonal
Specificity	Narrow	Broad
Activity/protein	High	Low
Virus Escape	High	Low
Cost	High	Low
Development Time	~ 1 year	~2-3 months
Source	Cells	Humans, Cows

Front. Microbiol., 28 March 2017

Promise and Perils of mAb Therapies

LETTER TO THE EDITOR

Bamlanivimab + etesevimab therapy induces SARS-CoV-2 immune escape mutations and secondary clinical deterioration in COVID-19 patients with B-cell malignancies

Monoclonal antibody therapies are effective in reducing progression of disease in COVID-19 Patients but can select for resistant variants. This Study describes five patients in whom monoclonal Therapy led to resistance and they were recued by Convalescent plasma.

Figure 1. CT and clinical evolution in patients according to cancer type. CT, cycle threshold; IOT, orotracheal intubation.

The future of antibody therapies against infectious diseases

- Antibody therapies are thriving in oncology and rheumatology but very underdeveloped for the treatment of infectious disease.
- COVID-19 has shown the efficacy, importance and feasibility of rapid development of antibody-based therapies
- Physicians and the public are now highly aware of the potential of antibody therapies against infectious diseases.
- The field of infectious diseases is the only area of medicine where the situation today is worse than in the past due to antimicrobial resistance.
- Areas of great promise include drug resistant organisms, infectious diseases in immunocompromised hosts and pathogens for which we have no drugs.
- Prediction: The 21st century will see the large-scale redeployment of antibodybased therapies in infectious diseases.

DiversitAb Platform

Christoph Bausch, PhD, MBA CHIEF SCIENCE OFFICER

Genetically-Engineered Therapeutic Engine Leveraging Natural Human Immune Response

Mimics way that nature synergistically targets human disease complexity

Antigen(s)

Bacteria (whole killed), viruses, toxins, pDNA, cell, human tissues (internally / externally sourced)

Tc Bovine™

Transchromosomic bovine genetically engineered to produce fully human antibodies

Hyperimmunization

Tc Bovine inoculated with target antigen to generate immune response, driving titers beyond protective levels

CON

antibody response

Plasmapheresis Antibodies collected in plasma

Purified Human Antibodies

Antibodies isolated through purification

37

Human Immunotherapy Treatment or Prophylaxis

DOWNSTREAM PROCESS (INDUSTRY STANDARD)

*MATSUSHITA H, SANO A, WU H, WANG Z, JIAO J-A, KASINATHAN P, ET AL. (2015) SPECIES-SPECIFIC CHROMOSOME ENGINEERING GREATLY IMPROVES FULLY HUMAN POLYCLONAL ANTIBODY PRODUCTION PROFILE IN CATTLE. PLOS ONE 10(6): E0130699. DOI:10.1371/JOURNAL.PONE.0130699

© 2021 SAB BIOTHERAPEUTICS, INC.

Consistent, Replicable Platform

In Vivo Efficacy Demonstrated Across a Broad Range of Targets

EFFICACY	MODEL(S)
100%	mouse (lethal)
100%	mouse (lethal aerosol)
100%	non-human primate (viral clearance)
100%	hamster (quad anti-toxin)
87%	mouse
100%	non-human primate
90%	mouse (lethal challenge)
100%	non-human primate (lethal challenge)
80-100%	hamster (lethal)
100%	non-human primate (viral clearance)
100%	mouse
100%	mouse
100%	mouse
100%	mouse (lethal)
100%	hamster (lethal)
100%	non-human primate
	EFFICACY 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

© 2021 SAB BIOTHERAPEUTICS, INC.

*IND-Enabled

Demonstrated Prophylactic & Therapeutic Efficacy In Vivo

SAB-131 Protects Against Lethal Challenge

5mg/kg Dose in Venezuelan Equine Encephalitis (VEE) Virus Lethal Mouse Challenge Model

CHRISTINA L. GARDNER, CHENGQUN SUN, THOMAS LUKE, KANAKATTE RAVIPRAKASH, HUA WU, JIN-AN JIAO, EDDIE SULLIVAN, DOUGLAS S. REED, KATE D. RYMAN, WILLIAM B. KLIMSTRA . (2017) ANTIBODY PREPARATIONS FROM HUMAN TRANSCHROMOSOMIC COWS EXHIBIT PROPHYLACTIC AND THERAPEUTIC EFFICACY AGAINST VENEZUELAN EQUINE ENCEPHALITIS VIRUS 91(14): E00226-17.

Neutralization of Monoclonal Cocktail Escape Mutations

Polyclonal SAB-159 Neutralizes mAb Escape Mutants

PERLEY CASEY C., BROCATO REBECCA L., WU HUA, BAUSCH CHRISTOPH, KARMALI PRIYA P., VEGA JEREL B., COHEN MELANIE V., SOMERVILLE BRANDON, KWILAS STEVEN A., PRINCIPE LUCIA M., SHAMBLIN JOSHUA, CHIVUKULA PADMANABH, SULLIVAN EDDIE, HOOPER JAY W. ANTI-HFRS HUMAN IGG PRODUCED IN TRANSCHROMOSOMIC BOVINES HAS POTENT HANTAVIRUS NEUTRALIZING ACTIVITY AND IS PROTECTIVE IN ANIMAL MODELS, FRONTIERS IN MICROBIOLOGY, VOLUME 11, 2020, PAGE 832

Pipeline Programs

© 2021 SAB BIOTHERAPEUTICS, INC.

Highly-Potent: SAB-185 Exceeds Titers of Human Convalescent Plasma by 40X

(PRNT100) 7000 6400 6000 5000 Titers per ml 4000 **40X** HYPERIMMUNIZATION HIGHER WITH WUHAN 3000 NEUTRALIZING **SPIKE PROTEIN** TITERS 2000 1000 160 <20 0 Negative Control Human Convalescent SAB-185 Antibody Plasma

SARS-CoV-2 Live Virus (Munich Strain) Neutralization Evaluation

WILLIAM B. KLIMSTRA. PH.D. DEPARTMENT OF IMMUNOLOGY ; MEMBER, CENTER FOR VACCINE RESEARCH; THE UNIVERSITY OF PITTSBURGH

Addresses Escape Mutants: SAB-185 Superior to Monoclonal Antibody

Selection for VSV-SARS-CoV-2 Wild Type Escape Mutation

© 2021 SAB BIOTHERAPEUTICS, INC.

SAB-185 Demonstrated High Neutralization Potency Against Mutants in Circulating Strains

In vitro Neutralization Potency Against VSV-SARS-CoV-2 Mutants

50 COMPLETE LOSS

VARIANTS	WT IC50 (ng/ml)	Mutation IC50 (ng/ml)	IC50 ratio (Mu:WT)*
B.1.617.1 [Kappa]	48.09	120.9	2.6
B.1.617.1 (-T95I) +V382L+D1153Y	48.09	120.9	2.6
B.1.617.2 [Delta]	49.68	138.9	2.8
B.1.617.2 + K417N	77.20	272.8	3.6
C.37 [Lambda]	78.22	74.4	1.0
В	80.94	279.0	3.4
B.1.523	80.10	229.3	3.0
B.1.525 [Eta]	80.94	279.4	3.5

** E484K (South Africa variant '501.V2'

WASHINGTON UNIVERSITY SCHOOL OF MEDICINE-ST. LOUIS; 15 JAN 2021

<5 NO SIGNIFICANT IMPACT 5-10 MILD IMPACT *The average IC50 ratio of Mu/WTD614G

UNITED STATES FOOD AND DRUG ADMINISTRATION, CENTER FOR BIOLOGICS EVALUATION AND RESEARCH (CBER), WEISS LABORATORY, AUGUST 2021.

10-50 MODERATE IMPACT

© 2021 SAB BIOTHERAPEUTICS, INC.

Efficacy Against Mutational Drift

Adaptive & Cross Reactive to Mutating Strains

SOURCE: NEXTFLU AT HTTPS://NEXTFLU.ORG/VIC/12Y/

Overcomes Resistance: SAB-176 Demonstrated *In Vivo* Efficacy Against Oseltamivir-Resistant Viruses

Single dose of SAB-176 at 5mg/kg provided 100% protection from mortality Mice treated with anti-Flu hIVIG at 20mg/kg had 0% survival

SAB-142: Potential Breakthrough Applicable to Many Autoimmune Diseases

Superior to Widely-Used Animal Serum-Derived Immune Globulins ATGAM & Thymoglobulin

Limitations of approved animal serum-derived ATG products:

- Serum sickness and development of antidrug antibodies (ADA) have limited use
- Rates of serum sickness are >30% so repeat dosing is not recommended
- Physicians reserve use for transplant induction or rejection but not both
- These issues limit use in new indications such as delaying/preventing onset of type 1 diabetes

Human alternative could have **significant efficacy, safety, and dosing advantages** over ATG animal products

In the **established transplant market**, a fully-human ATG with reduced risk of serum sickness AEs could **rapidly penetrate and expand existing use**

Significant market potential in delaying or preventing new-onset type 1 diabetes based on Phase 2 clinical trial results of rabbit ATG

SAB-142: Comparable Mode of Action to Approved Products

© 2021 SAB BIOTHERAPEUTICS, INC.

SAB-142: Similar Activity to Approved Rabbit ATG Targets CD8 and Protects T-Regulatory Cells

CD8 T Cells

BIOTHERAPEUTICS

KOL PRESENTATION:

Low Dose Anti-Thymocyte Globulin (ATG) in Type 1 Diabetes

Michael Haller, MD, MS-CL

Professor and Chief Pediatric Endocrinology, Silverstein Family Eminent Scholar Pediatric Endocrinology UNIVERSITY OF FLORIDA COLLEGE OF MEDICINE

© 2021 SAB BIOTHERAPEUTICS, INC.

Low Dose Anti-Thymocyte Globulin (ATG) in Type 1 Diabetes

Michael J. Haller, MD Professor and Chief Pediatric Endocrinology University of Florida

What is the scope of the problem?

Type 1 diabetes – 1 in 300 children

1 in 7 health care dollars attributable to diabetes and downstream costs

No FDA approved therapeutics outside of....insulin

Complex Disease requiring polyclonal "combination" therapy approach"

Need induction and maintenance therapies

The Major Therapeutic Breakthrough for Type 1 Diabetes - 1921

Thick brown muck" lowered glucose from 520 to 120 mg/dl

7.5ml into each buttock

100 years Later, 1921-2021...

Type 1 Diabetes Pathogenesis

Atkinson, M; Eisenbarth, G.S.; Michels, A. Lancet, 2014

Multiple therapeutic targets in a complex diseaseIdeal for a "Clean" Polyclonal Agent

"Failures"

- IL2+Rapamycin (ITN-led) Adverse effect
 Mycophenylate+Anti-CD25 No effect
 GAD No effect
 Canakinumab Anti-IL1-β No effect
- Metabolic Control Study
- No effect

"Successes"

Rituximab Anti-CD20 Transi
 Abatacept CTLA4-Ig Transi
 Teplizumab Anti-CD3 (ITN-led) Transi
 Teplizumab (prevention) Delay

Transient effect Transient effect Transient effect Delay of onset in Stage 2

*Thymoglobulin 6.5mg/kg (ITN-led) Positive effect in age 22-35
 *Thymoglobulin 2.5mg/kg 2-year preservation of C-peptide and A1c reduction

across all study ages

*Rabbit ATG from Sanofi – NOT SAB-142 Humanized TG Bovine

2 Years: Low-Dose ATG <u>Preserved C-Peptide</u> in New Onset T1D

*Rabbit ATG from Sanofi – NOT SAB-142 Humanized TG Bovine

Haller et al. Diabetes. 2019. Jun;68(6):1267-1276

2 Years: Low-Dose ATG <u>Reduced HbA1c</u> in New Onset T1D

*Rabbit ATG from Sanofi – NOT SAB-142 Humanized TG Bovine

Haller et al. Diabetes. 2019. Jun;68(6):1267-1276

Outcomes of T1D Studies

	Ν	Age (yrs)	Regimen	Primary Outcome (AUC C-peptide)	р
Abatacept	112	6–36	10mg/kg IV day 1, 14, 28, then monthly x 2 years	2hr MMTT at 2 years	0.0022
Rituximab	87	8–40	375mg/m ² IV day 1, 8, 15, 22	2hr MMTT at 1 year	0.03
ATG (± G-CSF) – Low Dose	89	12–45	ATG 2.5mg/kg IV over 2 days (± G-CSF 6mg SQ x 6 q2 week)	2hr MMTT at 1 year	0.0003 (ATG only)
Alefacept (T1DAL)	49	12–35	15mg IM weekly x 12, repeated 12 weeks later	2hr MMTT at 1 year	0.065
Teplizumab (AbATE)	77	8–30	Median dose ~11.6mg IV over 14 days ± repeat at 1 year	4hr MMTT at 2 years	0.002
ATG – High Dose (START)	52	12–35	6.5mg/kg IV over 4 days	2hr MMTT at 1 year	0.591

Cross Trial Comparison – 2 Years

Effect of Low-dose ATG superior at 2 years

Rabbit ATG from Sanofi – NOT SAB-142 Humanized TG Bovine

Diabetes Technol Ther. 2020 Dec;22(12):948-953

Low Dose ATG Prevention: Starting Q1 2022

- □ Stage 2 T1D = Ab+ / Dysglycemic
- □ Age 8 and up
- □ Single course low-dose ATG (2.5mg/kg)
- **Rabbit ATG from Sanofi**
- 2 IV infusions on back to back days
- 1:1 Randomization
- **97** Subjects

Low Dose ATG – Clinical Therapy?

Patients asking for clinical therapy = No
 Pilot ATG/GCSF = No...no...no
 TrialNet ATG = no (1 yr), no (18 mo), maybe (2 yr)

Access to Drug – FDA Approved
 No....no...no...no
Maybe....Maybe....Lets Discuss
OK, but

Low Dose ATG – Open Label Prevention

- **2** Children with Multiple Antibodies and Dyglycemia
- □ No study available for them/ likely to progress to T1D
- Both have a Parent who is in Health Care and with T1D
- □ Approached Me (not recruited)
- □ Treated April 2019 and July 2019
- □ Neither have progressed to T1D as of Today.... 2+ years

Serum Sickness in 2/3 of Rabbit ATG (Sanofi) NOT SAB-142

3-4 days of malaise, fever, joint swelling
 Often requires steroids
 Worsens diabetes management (days)
 Reduces capacity to give ATG again (though common in aplastic anemia)

Why SAB Polyclonal ATG (SAB-142)?

- Eliminate Serum Sickness
- Re-treatment without risk
- More potent in vitro than current ATG
- Likely to entirely replace current polyclonal immunosuppressive
 - (Thymoglobulin) if similarly effective
- Kidney Transplant / Autoimmune Disease / Cancer Therapy
- Large untapped market

Next Approaches

HAPPY 2 YEAR POST TREATMENT ANNIVERSARY!

Acknowledgements

National Institute of Diabetes and Digestive and Kidney Diseases

Clinical Trials

Tom Luke, MD CHIEF MEDICAL OFFICER

© 2021 SAB BIOTHERAPEUTICS, INC.

SAB-185: Clinical Development Plan

Phase 1: Healthy Volunteers	Phase 1b: COVID-19 Positive Ambulatory Patients	Phase 2/3 Pivotal Treatment Trial: NIH NIAID ACTIV-2 Adaptive Platform		
 Randomized, double-blind, placebo-controlled Single and multiple ascending dose study Administered intravenously 28 healthy participants in four cohorts 10, 25, 25 x 2, 50 mg/kg 	 Randomized, double-blind, placebo-controlled Ascending dose study Administered intravenously 21 non-hospitalized patients with mild or moderate COVID-19 in three cohorts 10, 25, 50 mg /kg 	 Randomized, blinded, superiority 220 participants (110 low dose, 110 high dose) vs 110 control COVID-19 disease symptoms <7 days 	 Randomized, unblinded, active comparator control, non-inferiority 600 participants (SAb-185 low dose) vs 600 active comparator COVID-19 disease + one risk factor and symptoms < 7 days 	
 Primary: Safety Secondary: pharmacokinetics, pharmacodynamics, anti- drug antibodies 	 Primary: Safety Secondary: pharmacokinetics, pharmacodynamics, anti-drug antibodies, virology, symptoms/signs 	 Co-Primary: 1–Safety, 2–Reduce duration of COVID-19 symptoms through 28 days, 3–Proportion of negative SARS-CoV-2 NP swabs at one or more days 3, 7 or 14, as compared to placebo Secondary: Multiple 	 Co-Primary: 1–Safety, 2– Composite endpoint of either hospitalization due to any cause or death due to any cause through day 28. Secondary: Multiple 	

ENDPOINTS
SAB-176: Clinical Development Plan

Phase 1: Healthy Volunteers	Phase 2a H1N1 Challenge Study: Healthy Volunteers	Planned Phase 2b/3 Adaptive Design Bone Marrow and Hematologic Malignancy Volunteers	
 Randomized, double-blind, placebo-controlled 27 healthy volunteers Single ascending dose study 1, 10, 25 and 50 mg/kg 	 60 total participants Two cohorts of 30 randomized to SAB-176 (25 mg/kg) or normal saline control (30:30) Challenge strain: H1N1 California (pandemic) 	 100 participants Bone marrow and hematologic malignancy participants with Type A or B influenza diagnosis and symptoms SAB-176 and SOC vs SOC Single dose : 25 mg/kg 	 100+ participants (TBD) Bone marrow and hematologic malignancy participants with Type A or B influenza diagnosis and symptoms < 4 days SAB-176 and SOC vs SOC Single dose: 25 mg/kg
 Primary: Safety Secondary: Pharmacokinetics, pharmacodynamics, anti- drug antibodies 	 Primary: Safety and viral load reduction Secondary: Sign/symptom reduction 	 Primary: Elimination of virus, hospitalization and ICU days and death Secondary: Prevention of recrudescent influenza or new influenza infection over 120 days, others 	 Primary: TBD Secondary: multiple

Q&A Session

R&D Day 13 OCTOBER 2021

© 2021 SAB BIOTHERAPEUTICS, INC.

Thank you

© 2021 SAB BIOTHERAPEUTICS, INC.

